# Using sampling error as a measure of reliability, not validity

Last week Jeffrey Henning gave a great #NewMR lecture on how to improve the representativeness of online surveys (click here to access the slides and recordings). During the lecture he touched lightly on the topic of calculating sampling error from non-probability samples, pointing out that it did not really do what it was supposed to. In this blog I want to highlight why I recommend using this statistic as a measure of reliability, but not validity. If we calculate the sampling error for a non-probability sample, for example from an online access panel, we are not representing the wider population. The population for this calculation is just those people who might have taken the survey. For example, just those members of the online access panel who met the screening criteria and who were willing (during the survey period) to take the study. The sampling error tells us how good our estimates of this population are (i.e. those members of the panel who met the criteria and who were willing to take a survey at that particular time). If we take a sample of 1000 people from an online access panel and we calculate that the confidence interval is +/-3% at […]